• 46 Posts
  • 87 Comments
Joined 1 year ago
cake
Cake day: July 13th, 2023

help-circle
  • I’m guessing it’s called that because it’s kinda headphone shaped. It was discovered in the 30’s so I’m assuming only the brightest parts of the nebula were visible to the astronomers.

    This image is a combination of false color narrowband images for the nebula itself, plus true color RGB stars (the nebula is mostly red and a little blue in true color). If you zoom in to the center you can see the very blue white dwarf that caused the planetary nebula to form. Also for those curious this is what a single 10 minute long Ha exposure looks like (image total is 83.5 hours exposure). Captured over 33 nights from Jan-May 2024 from a bortle 9 zone.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 83 hours 30 minutes (Camera at -15°C), NB exposures at unity gain and BB at half unity

    • Ha - 238x600"

    • Oiii - 247x600"

    • R - 54x60"

    • G - 53x60"

    • B - 54x60"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction 3x

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Narrowband Linear:

    • Blur and NoiseXTerminator

    • StarXterminator to completely remove stars (to be later replaced by the RGB ones)

    • ArcsinhStretch to slightly stretch nonlinear

    • iHDR 2.0 script (low preset) to stretch each channel the rest of the way.

    here’s the link to the repo if you want to add it to your own PI install.

    RGB Linear:

    • ChannelCombination to combine monochrome R G and B frame into color image

    • SpectroPhotometricColorCalibration

    • BlurXTerminator for star sharpening (correct only)

    • HSV Repair

    • StarXterminator to generate a stars-only image

    • ArcsinhStretch + HT to stretch nonlinear (to be combined with starless narrowband image later)

    • Invert > SCNR > invert to remove magentas

    • Curves to saturate the stars a bit more

    Nonlinear:

    • PixelMath to combine stretched Ha and Oiii images into color image (/u/dreamsplease’s palette)

    R = iif(Ha > .15, Ha, (Ha*.8)+(Oiii*.2))

    G = iif(Ha > 0.5, 1-(1-Oiii)*(1-(Ha-0.5)), Oiii *(Ha+0.5))

    B = iif(Oiii > .1, Oiii, (Ha*.3)+(Oiii*.2))

    • NoiseX again

    • Background Neutralization

    • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

    • even more curves

    • Pixelmath to add in the stretched RGB stars only image from earlier

    This basically re-linearizes the two images, adds them together, and then stretches them back to before. More info on it here)

    mtf(.005,

    mtf(.995,Stars)+

    mtf(.995,Starless))

    • Couple final curves

    • Resample to 65%

    • DynamicCrop

    • Annotation



  • Yeah if the smart scope is just doing all the work and spitting out an image on its own that’s fine. Generally as long as you include any kind of info about your processing steps it’s fine, and you can have it be as brief or detailed as you want (I know mine are on the longer side).

    Personally I’m all for more detail = better. It’s a lot easier for people to give constructive criticism, and a good enough writeup can serve as a guide for those just learning how to process (and I’m always going back to my old posts just to remember how the hell I even processed a tricky image)




  • Sh2-64 is the red nebula to the right of the image. It frames up pretty well with the more golden stars seen in the milky way core. I probably should’ve gotten more exposure time to help bring out some of the dark nebula details, but it was only clear for one night at the dark site (at least the night went perfectly, which is rare for trips out to the middle of nowhere). Captured on June 7th, 2024 from a Bortle 3 zone (Deerlick Astronomy Village)

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 5 hours 44 minutes (Camera at half unity gain -15°C)

    • L - 76x120"

    • R - 32x120"

    • G - 32x120"

    • B - 32x120"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel per panel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction

    Luminance Linear:

    • BlurXterminator (Correct only)

    • NoiseXterminator

    • HistogramTransformation + sketchpad’s iHDR script (low preset) to stretch to nonlinear

    RGB Linear:

    • ChannelCombination to combine monochrom R G and B stacks into color image

    • SpectrophotometricColorCalibration

    • BlurXterminator (correct only)

    • HSV repair

    • ArcsinhStretch + iHDR script (low preset) to stretch to nonlinear

    Nonlinear Processing:

    • LRGBCombination using stretched L as luminance

    • DeepSNR

    • Various curve adjustments for lightness, contrast, hue, saturation, etc (with varying lum/star masks)

    • Slight SCNR green

    • ColorSaturation to boost the saturation of the Ha region

    • More curves

    • NoiseXterminator

    • invert > SCNR > invert to remove some magentas

    • LocalHistogramEqualization

    two rounds at scale 16 and 132 to target different sized structures

    • LOTS more curve adjustments

    • MultiscaleLinearTransform for chrominance noise reduction

    • Even more curves

    • Resample to 60%

    • Annotation



  • Omega Centauri is the largest globular cluster in the sky and contains about 10 million stars, but it’s generally considered a southern hemisphere target since it’s at -47 declination. It was right at the meridian for me while waiting for it to get completely dark out, so I tried shooting it at just 9 degrees up. Had to do short exposures without guiding, because even the dim flashlights of the other campers with me would overwhelm my guide camera. Captured on June 7th, 2024 from a Bortle 3 zone (Deerlick Astronomy Village)

    Places where I host my other images:

    Instagram | Flickr


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120MC for guiding

    • Moonlite Autofocuser

    Acquisition: 12 minutes (Camera at half Unity Gain, -15°C)

    • Lum - 20x10"

    • Red - 11x15"

    • Green - 13x15"

    • Blue - 12x15"

    • Flats- 30 per filter

    Capture Software:

    PixInsight Processing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration

    • DrizzleIntegration (2x, Var β=1.5)

    • DynamicCrop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Luminance:

    • BlurXTerminator (correct only mode)

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    RGB:

    • ChannelCombinaiton to combine monochrome R, G, B stacks into color image

    • BlurXTerminator (correct only mode)

    • SpectroPhotometricColorCalibration

    • HSV Repair

    • MMT for large scale chrominance noise reduction

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    Nonlinear:

    • LRGBCombination with stretched L as luminance

    • Several CurveTransformations to adjust lightness, contrast, colors, saturation, etc.

    • DeepSNR Noise reduction

    • HistogramTransformations

    • More curves

    • Resample to 70%

    • Annotation



  • Wasn’t expecting much with the last night’s geomagnetic storm, but seeing the aurora come in on the camera was definitely an “oh shit” moment for me and my wife, especially when it got overexposed. The initial burst in the gif was very noticeable to the naked eye, despite our light pollution. Sadly it died down a bunch, but seems to have come back (although not as strong) after 3am (video timestamp is in UTC). Tonight definitely wont be as strong, but I’m hoping the camera might pick something up on another timelapse. Captured on May 10th, 2024 from Atlanta, GA

    (probably) Better quality version on youtube

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • ASI290mc + the all sky lens it comes with

    Acquisition:

    • looped 15" exposures at gain 160

    Capture Software:

    • Sharpcap

    Processing:

    • just PIPP to debayer and handbrake to convert it









  • lefty7283@lemmy.worldMtoAstrophotography@lemmy.worldOrion
    link
    fedilink
    English
    arrow-up
    9
    ·
    2 months ago

    Could you edit your equipment out of your title?

    Also any and all astro photos are allowed here, regardless of how “low effort” they are (as long as they follow the couple rules on the sidebar. I don’t want there to be any kind of arbitrary minimum quality standard to prevent people from posting their space photos on here.


  • Finally done with classes and I got some time to at least star processing my pics. Gonna be a while before I figure out all the HDR stuff, so here’s a pic of the prominences about 10 seconds before C3. It was absolutely nutty seeing them naked eye during the eclipse, and visually through my other telescope. Captured on April 8th, 2024 from Sikeston, MO.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • Canon T3i (Ha modded)

    • Skywatcher Quattro Coma Corrector

    • Moonlite Autofocuser

    Acquisition:

    • Single 1/4000" exposure at ISO 100

    Capture Software:

    • Eclipse Orchestrator Free for automating the capture sequence

    • NINA for controlling the mount and autofocuser

    Photoshop processing:

    • Crop, and some minor adjustments to exposure, contrast, shadows, whites, and blacks, and slight S curve



  • lefty7283@lemmy.worldOPMtoAstrophotography@lemmy.world23% Waxing Crescent
    link
    fedilink
    English
    arrow-up
    1
    ·
    edit-2
    2 months ago

    Thanks to my north facing balcony, I can only photograph the moon when it’s at high declinations. Fortunately it was at +27 dec the other day, and it was early enough for me to be awake to shoot it! Captured at 10pm on April 12th, 2024.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120MC for guiding

    • Moonlite Autofocuser

    Acquisition: (Camera at Unity Gain, -15°C)

    • R - 20000 x 5.4ms

    • G - 2000 x 4.3ms

    • B - 2000 x 6.0ms

    Capture Software:

    • Captured using Sharpcap and N.I.N.A. for mount/filterwheel control

    Stacking:

    • Stacked the best 25% of frames in Autostakkert (autosharpened, 3X Drizzle)

    PixInsight Processing:

    • DynamicCrop

    • ChannelCombination to combine monochrome images into RGB image

    • ChannelMatch to align G and B color channels to red

    • ColorCalibration

    • HistogramTransformation (slight stretch)

    • SCNR > invert > SCNR to remove green and magenta color fringing

    • CurvesTransformations to adjust lightness, contrast, colors, saturation, etc.

    • Very slight convolution to hide some drizzle artifacts

    • LocalHistogramTransformation

    • dynamic crop

    • Annotation



  • This is an animation of every 1/4000" frame I took during/around totality. For most of totality I was looping HDR sequences and had one of these frames roughly every 15 seconds, but around each contact I bursted these short frames to get the beads. The animation lasts for the entirety that my solar filter was off, which was about 13 seconds before/after each contact. I think it’s cool seeing the motion of the moon relative to the sun like this. Since imgur compression is kinda shit, here’s a (slightly) less compressed version on youtube.

    Captured on April 8th, 2024 from Sikeston, MO.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • Canon T3i (Ha modded)

    • Skywatcher Quattro Coma Corrector

    • Moonlite Autofocuser

    Acquisition:

    • Single 1/4000" exposure at ISO 100

    Capture Software:

    • Eclipse Orchestrator Free for automating the capture sequence

    • NINA for controlling the mount and autofocuser

    Processing:

    • Manually aligned the frames in photoshop based on the prominences

    • Exported frames as tiffs

    • PIPP to make final gif at 16fps